Structure, stability, and electronic property of carbon-doped gold clusters Au(n)C- (n = 1-10): a density functional theory study.
نویسندگان
چکیده
The equilibrium geometric structures, relative stabilities, and electronic properties of Au(n)C(-) and Au(n+1)(-) (n = 1-10) clusters are systematically investigated using density functional theory with hyper-generalized gradient approximation. The optimized geometries show that one Au atom capped on Au(n-1)C(-) clusters is a dominant growth pattern for Au(n)C(-) clusters. In contrast to Au(n+1)(-) clusters, Au(n)C(-) clusters are most stable in a quasi-planar or three-dimensional structure because C doping induces the local non-planarity while the rest of the structure continues to grow in a planar mode, resulting in an overall non-2D configuration. The relative stability calculations show that the impurity C atom can significantly enhance the thermodynamic stability of pure gold clusters. Moreover, the effect of C atom on the Au(n)(-) host decreases with the increase of cluster size. The HOMO-LUMO gap curves show that the interaction of the C atom with Au(n)(-) clusters improves the chemical stability of pure gold clusters, except for Au3(-) and Au4(-) clusters. In addition, a natural population analysis shows that the charges in corresponding Au(n)C(-) clusters transfer from the Au(n)(-) host to the C atom. Meanwhile, a natural electronic configuration analysis also shows that the charges mainly transfer between the 2s and 2p orbitals within the C atom.
منابع مشابه
Investigation of structural and electronic properties of small Au n Cu m (n+m≤5) nano-clusters for Oxygen adsorption
In this study, the structures, the IR spectroscopy, and the electronic properties of AunCum (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (GGA) and exchange correlation density functional theory (DFT). The study of an O2-AunCum system is important to identify the promotion effects of each of the two...
متن کاملInvestigation of structural and electronic properties of small Au n Cu m (n+m≤5) nano-clusters for Oxygen adsorption
In this study, the structures, the IR spectroscopy, and the electronic properties of AunCum (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (GGA) and exchange correlation density functional theory (DFT). The study of an O2-AunCum system is important to identify the promotion effects of each of the two...
متن کاملA Density Functional Theory Study of Boron Nitride Nano-Ribbons
The electronic and structural properties of pristine and carbon doped (C-doped) boron nitride nano-ribbons(BNNRs) have been studied employing density functional theory (DFT) calculations. Total energies, gapenergies, dipole moments, and quadrupole coupling constants (qcc) have been calculated in the optimizedstructures of the investigated BNNRs. The results indicated that the stability and gap ...
متن کاملAdsorption of H2S molecule on TiO2/Au nanocomposites: A density functional theory study
The adsorption of hydrogen sulfide molecule on undoped and N-doped TiO2/Au nanocomposites was investigated by density functional theory (DFT) calculations. The results showed that the adsorption energies of H2S on the nanocomposites follow the order of 2N doped (Ti site)>N-doped (Ti site)>Undoped (Ti site). The structural properties including bond lengths, angles<span id="...
متن کاملDensity Functional Study on Stability and Structural Properties of Cu n clusters
In this research DFT/B3LYP method has been employed to investigate the geometrical structures,relative stabilities, and electronic properties of Cun (n=3–10) clusters for clarifying the effect of sizeon the properties. Through a careful analysis of the successive binding energies, second-orderdifference of energy and the highest occupied-lowest unoccupied molecular orbital energy gaps as afunct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 139 24 شماره
صفحات -
تاریخ انتشار 2013